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ABSTRACT

NON-LINEAR BUCKLING ANALYSIS OF COLUMNS ON ELASTIC
FOUNDATION
By
Hashem Saleem R. Al-Khaldi
Supervisor

Dr. Mazen Al-Qaisi

In this resgarch the problem of non-linear buckling of columns on
elastic foundation was studied using the power series and trial function
methods. The clamped-clamped columns were analyzed by both methods,
while the trial function method was used to analyze the simply supported
columns. A variational principle was employed to derive the differential
equation and the boundary conditions of the system. This equation and

boundary conditions were reduced to non-dimensional form.

For both solution methods used, a parametric study was conducted. In
this study the effect of the linear foundation modulus, ratio factor, the
deflection amplitude and the power series polynomial order were studied

over the ranges which are expected to be physically valid.
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According to the convergence study, the buckling load was

determined after a certain power series polynomial order which was noticed

to be acceptable at a value of 20.

It was found that the increase in the linear foundation modulus and the
decrease in the ratio factor will increase the required buckling load of the
structure. It was also concluded that the trend of solution of both power
series and trial function method is identical. The power series method was

found to be a very powerful method when it was computerized.
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Chapter One

LITERATURE SURVEY

1.1 INTRODUCTION.

The elementary theory of the bending of a column on an elastic
foundation ‘assumcs that the beam is resting on a continuously distributed set
of springs the stiffness of which is defined by an equivalent modules of the
foundation K ( linear and non-linear terms ). Howéver, it is rather the
exception than the rule that the foundation is actually constituted this way.
Generally, the foundation is an elastic continuum characterized by two

elastic constants, a modulus of elasticity E and a Poisson’s ratio v.

In certain applications, a column of relatively small bending stiffness
is placed on an elastic foundation and loads are axially applied to the
column. The loads are transferred through the column to the foundation. The
column and foundation must be designed to resist the loads without failing.
Often, failure occurs in the column before it occurs 'in the foundation.
Accordingly, in this thesis we assume that the foundation has sufficient
strength to prevent its own failure. Furthermore, we assume that the
foundation resists the loads transmitted by the column, in a non-linearly

elastic manner; that is, the pressure ( stress ) developed at any point between
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the column and the foundation is proportional - non-linearly - to the
deflection of the column at that point. Since we consider small displacement,
the solution presented in this thesis for the column on an elastic foundation

is generally conservative for the range of deflection treated.

The nonlinear structural behavior of columns is an important feature
in many engineering applications, so problems of elastically supported
columns pertain to columns for which the elastic support is provided by a
load-bearing medium distributed continuously along the.length of the
columns. This load-bearing medium is refereed to as foundation. Columns
on elastic foundation have a wide application in many technical problems:
shells, thin-walled tubes, domes, and beams, to mention just a few. The
elastic foundation in such cases is supplied by the resilience of the adjoining
portions of a continuous elastic structure. For example, bending analysis of
spherical shells can be reduced to the problem of flexure of elastically
supported curved columns where the elastic foundation is represented by the

resilience of the hoop elements in the shell.

The non-linear structural behavior of columns is cbnsequently the
subject of numerous publications. By contrast very few deal with the

nonlinear behavior of columns on an elastic foundation. The polynomial
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approach ( power series approach ) will be used, since exact and rigorous
solutions are extremely hard to obtain. It is well known that the stability
problem and the convergence rate of an approximate solution is affected by

the nature of the displacement function chosen.

1.2 PAPERS REVIEW.

Many papers available in the literature that deal with beam ( and little
for columns ) on elastic foundation. These beams are sﬁbjected to a different
loading conditions and different solution procedures have been used to solve

them for different boundary conditions.

Elishakoff et al.,(1994), they have investigated buckling of initial
imperfection sensitive structure - column on a nonlinear elastic foundation.
A criterion based on the concept of “modal buckling load” was proposed to
determine which modes should be included in the analysis when the
weighted residuals method was utilized to calculate the limit load-maximum

load the structure can support-for a given initial deflection:

For stochastic analysis, a random field is suggested for the uncertain
initial imperfection, and Monte Carlo simulations were performed to obtain

the probability density of the buckling load and the reliability of the column.
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Finally, a non-stochastic convex model of uncertainly was employed
to describe a situation when only limited information was available on
uncertain initial deflection, and the minimum buckling load was obtained for
this model. The results from both the stochastic and the non-stochastic

approaches were derived and critically contrasted.

Amazigo (1971), has obtained an approximate asymptotic expressions
for the buckling stresses and auto-correlation of the lateral displacement of
infinitely long imperfect columns resting on nonlinear elastic foundations
with known autocorrelation. The formulas were discussed and compared
with previous results obtained by means of truncated hierarchy and

equivalent linearization techniques.

Videc and Sanders (1976), have obtained an approximate asymptotic
expression for the buckling load of an imperfect column resting on a

nonlinear elastic foundation. The result holds for a large range of

imperfection shapes, which were assumed to be stationary random functions

of position.

The asymptotic analysis was based on application of Khas’minskii’s

limit theorem to equations for the slowly varying part of the deflection of the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



column. Previous results obtained for Gaussian imperfection shapes were
shown to be valid also for the larger class of random imperfections

considered in this work.

Naschie et al.,(1989), used several methods of solution which were
chosen on the basis of being coherently connected to the energy method.
The method of trial function, an obvious example for the inter-relationship
between energy formulation and the solution of the problem, was considered
first. Subsequently, the discrete elements method and the method of finite
difference were presented. Finally, the Poincare-Lindstedt perturbation and

discrete version of this method were considered.

In the work of Sheinman and Adan (1991), the imperfection
sensitivity of a beam on a non-linear elastic foundation was studied. The
nonlinear equilibrium equations were based on high-order nonlinear
kinematic model which takes into account transverse shear deformation. The
resulting differential equations were solved by Newton’s method and a
special finite-difference scheme. A parametric study of the effects of
imperfection shape and amplitude was presented for a compression-load

isotropic beam on a hardening and softening elastic foundation.
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The results indicated that the beam on a hardening foundation exhibits

substantial post-buckling stiffness as compared to the beam with a softening
foundation. Moreover, it was shown that the overall behavior can be
characterized by wavelength changes of the buckled pattern as the loading

parameter increases.

Sundararjan (1974), has studied the stability of columns on Winkler
type elastic foundations subjected to stationary forces ( conservative or non-
conservative ). Various cases were discussed and a theorem on the influence

of the foundation of the critical load was derived.

Smith and Herrmann (1972), have studied an intuitively unexpected
and seemingly unknown aspect of the behavior of a cantilevered beam on an
elastic foundation subjected to a follower force at its free end. It was found
that the critical load for flutter is independent of the foundation modulus
which characterizes the Winkler-type elastic embedding. The frequency of
vibration of the beam increases with increasing foundation modules, but the

magnitude of the critical load is not affected. This result is valid for any

value of “ tangency coefficient »,
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In the work of Hansen and Roorda (1974), the concept of almost sure
sample stability and sample stability in probability were formulated for
elastic systems. Using a Koiter type approach, these concepts were used in
the analysis of imperfection sensitive structures. The applied load and the
initial geometric imperfections were introduced into the analysis as random
quantities. A compressed beam of finite length on a nonlinear elastic

foundation was used in an approximate calculation.

Sheinman et al.,(1993), have studied the influence of the choice of
approximating function for the axial displacement in nonlinear analysis of

isotropic simply supported beams on an elastic foundation.

Three types of functions, namely the vibration, buckling and
polynomial approaches, were examined with the aid of the Rayleigh-Ritz
procedure, and the polynomial approach function was found to yield the best
results, while the buckling approach turned out to be inappropriate for the

post-buckling behavior.

Panayotounakos (1989), has investigated a closed-form solution of the
nonlinear analysis of a thin and long straight bar, lying on an elastic

foundation. This investigation was achieved by means of a strict
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mathematical procedure conceming the solution of the strongly nonlinear

differential equation:

0'""" +30'0" tan0 + (1+ 3tan’ 0)0'20" +0"* tan0 + (1,0" / cos0) +
(A,0"* tan6/cos0) = A, sinOcos’ 0  ;(A,,A,,A, = constants),

which governs the deflected elastica of the structure. This solution was
constructed for values of slope 6 lying inside the interval [0°, 40°], because
this interval is of practical interest for engineering structures, and,
furthermore, the proposed approximations were accurate enough for that
interval. Several functional transformations were used and a quantitative
analysis was developed yielding reliable results, in conformity with the

physical problem.

1.3 PROBLEM STATEMENT

Structures supported by elastic foundation are quite common in
engineering, and the literature on the linear analysis of the beam is extensive.
Much less coverage has been given to the non-linear analysis of this class of
structures, and, in particular, very little attention has been given to structures
supported by a non-linear elastic foundation. So, a complete parametric
study addressing the effects of a non-linear elastic parameter on the overall
non-linear behavior is unavailable. The present work is an attempt to remedy

this shortage of information.
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It is well known that the foundation status determines whether the
structure is in hardening or in softening. So this will address the effect of
linear foundation modulus ( k; ), ratio factor ( o« ), amplitude (C) and
polynomial order ( N ) on the overall behavior of columns supported by a
foundation that exhibits non-linear hardening and softening.

477352

In this work, the problem of non-linear buckling of a column on
elastic foundation will be studied and analyzed by l_15ing the power series
and trial function methods. The governing equation of the structureis a
fourth-order non-linear eigenvalue diffferential equation with constant
coeffeciant. A clamped-calmped and simply supported columns will be
discussed in this work. A power series method is found to be a powerfull
method for solving this kind of non-linear porblems. A good agreement in
the trend of solution is found to be between the trial function and the power

series method.
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Chapter Two

FORMULATION OF THE NON-LINEAR
BUCKLING PROBLEM OF A PERFECT FINITE

COLUMN ON ELASTIC FOUNDATION.

2.1 INTRODUCTION

The first complete -and correct solution of stability problem is that of
an elastic column by the eminent mathematician Leonard Euler, so the
Euler Elastica” is a well known term in structural engineering. The solution
was intended as an illustration of his newly developed calculus of variations.
Meantime, we know that this was just the beginning of a new discipline, the
theory of post-buckling. This theory has in recent years acquired a profound
importance in modemn technology of structural engineering design. In this
. chapter, a variational principle will be used to formulate the non-linear
buckling problem of a perfect ( exactly straight with no initial deflection )

finite column on elastic foundation.

2.2 REMARKS TO THE FORMULATION AND THE SOLUTION OF PROBLEMS IN

ENGINEERING.

It is very important, especially at the beginning of a serious study of

applied mechanics and science in general, to distinguish clearly between the
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formulation and the solution of a problem. This is as important as being clear
about the physical implication of the assumption underlying a theory. We
take it for granted here however that theory, reality and the role of

experimental verification are well defined.

Formulating a problem is in fact asking questions whereas the solution
is answering those questions. Asking the question in science mcans
formulating the differential equations governing a ccrt_ain phenomenon such
as the buckling of a column. In this thesis, we have suggested an alternative
way of posing the question. That is to say, establishing the energy or work

functional.

2.3 ESTABLISHING THE CORRESPONDING POTENTIAL ENERGY

FUNCTIONAL OF THE PROBLEM.,

The first step will thus be establishing the corresponding potential
energy functional of the problem. Other very important aspects which should
be kept clearly apart are mechanics, geometry and algebra. The simplest
way to explain this point is to consider a specific problem which may be the
problem at hand, i.e. The buckling of a simply supported column as shown
in Figure (2.1).

The axial extensibility ( stretching energy ) as well as the shear

deformation energy are neglected. This neglection is an engineering
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approximation based on the fact that energy due to axial strain and shear
deformation are very small. The only strain energy left are both the strain
energy of bending and the strain energy due to the elastic foundation. The

expression for that is ( Naschie ef a/, 1989 ) :
1 -
U, +Uy = .[.LEEI"Z‘L“ +[ 1 qOwyawiax 2.1

where :

U : The strain energy due to bending

Ugr : The strain energy due to the elastic foundation.

% : The change in curvature.

E : The young’s modules.

I : The moment of inertia of a cross-section of the column.

L : The Length of the column.

w  : The transverse deflection of the column.

q(w) : The force per unit deflection of the elastic foundation, and is given
as:

q(w)=K;w+Kw?-Ksw’ (2.2)

The parameters K; K, and K; are the linear, quadratic and cubic
foundation constants, respectively. For simplicity, the quadratic constant K,

will be assumed zero.
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So the strain energy due to the elastic foundation becomes:

Upr = |, || 1K= Kyw o
L1 1
=], GEW" - KWl (2.3)

Substitute equation (2.3) into equation (2.1):

U=U,+Ug

L1 L1 1
= L -Z—EIx’dx +f, G KW —ZK,w‘)dx (2.4)

The load potential, on the other hand, is equal to the load times the
end shortening at the sliding support of the column as shown in Figure (2.1).
Thus,
U,=PA (2.5)
Where :
U, :Theload potential.
P :The axial compressive load.
A ‘The end shortening at the sliding support of the column.

The total potential energy functional is therefore:
V= [ 2Epcan+ [f G Kw? - L Kwt)dc - PA 2.6)
°2 027t 47

As we see, in this form, (V) is slightly ill posed. This is, for instance,

because we have two unknowns % and A which are dependent on each other.
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and a curved element of a buckled column ds are equal ( dx=ds). The slope

at any point of the buckled column 1s y. In Figure (2.2), a small element of

the buckled column is drawn enlarged.

A%

Figure (2.2): Exact elastica of the column

From differential geometry, we know that this element is equivalent to
that of Figure (2.3) since the difference between the curved and straight

triangle vanishes when taking the differential limit.

-*-“oix—o!u——-‘

}
clw v
oS

Figure (2.3): Approximate elastica of the column
Note also that the horizontal projection of ds=dx is dx-du. This is

because the horizontal length shrank due to the u displacement component
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and is no longer L but L-A In order to find the curvature of the buckled

column in terms of w, we examine Figure (2.3) from which it is evident that:

in(y)=—-= i w'

e T

thus

vy =sin"'(w") 2.7)
Since the curvature is nothing but the rate of change of the slope ¥

with x, we find that:

1 ’ T LAY w"
_—R_-= vy’ = (sin"'(w")) =m 2.8)

Noting that the curvature of the column before deformation was :

=0 (2.92)

8 |

1
R
We see that the change in curvature is:

l wll
e (2.9b)

_1
L

The attentive reader may now be misled into thinking that this
expression is incorrect since he would find the following expression in any

book on differential geometry:

w"

z = (l— wn)uz
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Also, y is not avery good choice as an independent variable if we wish to
solve the problem. In this form, the boundary conditions of the problems are
not clearly defined. For these and other reasons, it is more convenient to
express x and A interms of the displacement vector. On the other hand, to
find the change of curvature y and the end shortening A in terms of the
displacement vector is a problem which causes, relatively speaking, some
difficulties. However, this is a problem of differential geometry and not of

mechanics.

As we shall see, it tuns out that 4 and A can be expressed in terms of
the lateral displacement component w so that the path is now clear to use,

for instance, a trial function for w and solve the problem.

In choosing the trial function for w, we are guided by intuitive
mechanical considerations such as : what deflection form do we expect
when a beam is loaded at the center, and what would change if the boundary
conditions would have been different? However, once a trial function has
been chosen, we are back in analysis and algebraic manipulations. That is,
so because we have to perform integration and differentiation on V. It is this

synthesis between physics ( mechanics ), geometry and algebra ( analysis )
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which causes difficulties but which also makes structural mechanics so

interesting. Mastering this point is probably the key to success in this field.

2.4 THE DIFFERENTIAL GEOMETRY OF THE BUCKLED COLUMN,

Consider the column of Figure (2.1) where the displacement of a point
of the unbuckled state p; to the buckled state p, is indicated. The
displacement vector taking p;,p. is thought to be decomposed into two
components, the axial displacement component u and the lateral component

w which is perpendicular to u.

Figure (2.1): Buckling of a finite simply supported column on non-linear

elastic foundation.

Here, we are assuring the central line of the column to be inextensible,

so that the length L of the column before deformation is also L after

deformation. Consequently, a straight element of the unbuckled column dx
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and a curved element of a buckled column ds are equal ( dx=ds). The slope

at any point of the buckled column is . In Figure (2.2), a small element of

the buckled column is drawn enlarged.

Ol — du

j—t%/

Figure (2.2): Exact elastica of the column

From differential geometry, we know that this element is equivalent to
that of Figure (2.3) since the difference between the curved and straight

triangle vanishes when taking the differential limit.

-——o{x—olu——‘

y
clw v
* ot 67(
A%

Figure (2.3): Approximate elastica of the column
Note also that the horizontal projection of ds=dx is dx-du. This is

because the horizontal length shrank due to the u displacement component
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and is no longer L but L-4 In order to find the curvature of the buckled

column in terms of w, we examine Figure (2.3) from which it is evident that:

sin( )_ﬂ_ﬂv___w,

VIS T

thus

vy =sin ' (w') .7
Since the curvature is nothing but the rate of change of the slope y

with x, we find that:

1 r e -1 ANV W"
F=V= (sin”' (w’)) :m (2.8)

Noting that the curvature of the column before deformation was :

=0 (2.9a)

8 |m=

1
R
We see that the change in curvature is:

1 1 w'
R a0 (20)

x ==
The attentive reader may now be misled into thinking that this
~ expression is incorrect since he would find the following expression in any

book on differential geometry:

w"

x - (1 - wl:l )JIZ
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However, this presumption is not true as the differentiation in both
expressions is with respect to different coordinate systems. The last
expression does not take into consideration that the column was first straight
then moved into buckled state. For the sake of simplicity and consistency we
should, therefore, use the expression (2.9b) in finding the strain energy of

bending.

The second important geometrical consideration is to express A in
terms of the displacement vector. To do this, we consider again Figure (2.3).

From the theorem of Pythagoras, we see that:

(ds)*=(dx-du)*+(dw)* (2.10a)
Dividing by (dx)* we obtain

_d_f_ 2 _ dx —du 2 ﬂ 2

) =5+ ) (2.10b)

Noting that (ds=dx) and denoting differentiation with respect to x by a
prime, we find:
1=(1-u') +w"

which means

1wt = A=)
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du
—=1-(1-w )
I ( )

This leads to

du=[1-(1-w'*)"?)dx (2.10¢)
Integrating both sides and noticing that:

[Fdu=a (2.11a)
One obtains

A= [ du=[ T1-(1-w?)"1dx (2.11b)

The preceding derivations were purely differential geometrical once
and did not use any mechanical principles except perhaps the concept of a

point moving from p, to p, which is strictly speaking a kinematical problem.

2.5 THE TOTAL POTENTIAL ENERGY OF THE BUCKLED PROBLEM,
we now come to the physical and mechanical considerations. The
total potential energy of the column is defined as the difference between the

total strain energy and the load potential:

V = Total Strain Energy - Load Potential
= (Energy due to bending + Energy absorbed from elastic foundation

+ Energy due to stretching) - Load potential
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= Up+Ugr+Us-Up
=U-Up (2-12)
Where U can be expressed as :

L L1 L1 1
U—_-Io EEAeldx_'-Io EEIxde'l'L (EKI.WI —zKS“")dt (2.13&)

where : € = the axial strain of the column.
As we have assumed the central line to be inextensible ( ds=dx ) then
the axial strain is zero and so is the stretching energy Us. Thus, the total

potential energy is :

12 | 1 | 1 ‘
V=] EEIx’dx+ J, (G Kw? - Kyw)ds— PA (2.13b)

Inserting the expressions found for ¥ and A in terms of w [from

equations (2.9) and (2.11b) ] in V, we obtain:

- l W'’ _ {1 — w?2)12 }_ :_l 4
V—IO{ZEI(I_W'z) P[L—(1~w?) ]+ Kyw? - K pdx (2.14)

Now, after the problem is formulated, we can proceed in two different
ways to solve it. We have namely the choice of either of two possibiliti;s,
the first is to use the calculus of variations to generate the differential
equation of the problem from V and then find the solution using numerical

integration. The second way is to proceed from V directly to the solution.
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Before that, we will rearrange V and expand the brackets in order to
write the functional in an orderly manner from which, by pure inspection of
V, we may make several qualified statements about the expected nature of

the solution. Expanding (1-w'*)*and (1-w**)"* in power series, we get

respectively:

(A=—w?) =1+ w2+ e (2.15a)
14112 1 1 1 4

(1-w'?) =,1+Ew' +§w' Freresrerrentnsonsansas (2.15b)

Substitute these expanded forms into equation (2.14) you will get:

V=I.L{';'EI("’"3)(1+W" +W"+...)"P(-;-w" +%w"+...) +-;—K,w’ —-:—K,w‘}dx(z.ISC)

where we have written explicitly terms up to the fourth order.

2.6 INSPECTION OF THE TOTAL POTENTIAL ENERGY.

It is usefull for further discussion to write V in the following form:
V=V+Vi+ Vot Va+Vit........... | (2.16a)
where V; is the sum of all terms of the i order. For instance, Vo is of the
zero order which means a constant, while V is the sum of all linear terms
and V, is the sum of all quadratic terms and so on. It should be noted that

for the problem at hand :
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V0=V1=V3=V5= ........ = 0 (2 1 6b)

and we are left with term of even order only, namely:

L1 1 1
V, = L (EEIw"z —Epw" +EKlwz)dx (2.17)
— L _]_'_ 1212 _l 14 _1 4
V,= L (ZEIW w st 4K_,'w )dx (2.18)
and so on.

It is instructive to understand the meaning of some of the properties
reflected in the structure of the V functional. To start with the V, constant
terms must be and are in fact immaterial to the solution of the problem since
variations and differentiation which are required for generating the
equilibrium equation can not depend on a constant. A constant simply drops
out in a differentiation process.

Second, V; must always vanish. This is because stability investigation
is, of course, an investigation of equilibrium, which means that the total
potential energy must be stationary and we would only like to know whether
it is a minimum or a maximum. In other words, the first variation of the

functional or the first derivative of the function must vanish.
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Third, if we look closely at V, we find that it is the well known
quadratic form of the classical eigenvalue problem of a buckled column and

corresponds to the linearized differential equation:

we® %w" +%w 0 2.19)

which may be generated from V; using the standard method of calculus of

variations as we will see later.

As analysis based upon V; solely and ignoring all higher order terms
(Va, Vs, ...) would give only the critical eigenvalue buckling load, but no
relationship between the load and the corresponding deflection. To obtain
this relationship, one has to take higher order terms into considerations. This
relationship is usually refereed to as the post-buckling curve and is equally

obtainable from the corresponding non-linear differential equation:

L

w2 K K s (2.20)
(1-w'*)¥?|  EI EI " EI

Finally, the non existing third order terms (V) are an indication that
the post-buckling curve has a horizontal tangent at the critical point in a

load-deflection plot of the post buckling curve as we will see later.

If we return back to the equations (2.17) and (2.18), we find that the

linear foundation constant K; is included in the second variation of the
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functional ( linear problem ), while the cubic foundation constant Kjis
included in the fourth variation of the functional ( non-linear problem ), so
they are completely separate. If the effect of both constants K, and K; is to
be studied then it is a must to assume a functional of the problem as the sum
of both V, and V, at the same time, i.€.

V24=V2tVy

= _[:(lEIw"2 _1pye +1K,w2)dx
+ [ GEB w? - —Pw'* —— K yw*)dx
02 8 4

In order that we want to study the effect of both constants K; and Kj,
then the form of the functional in equation (2.21) should be taken into
consideration as it will be shown in chapter four except that the higher order
terms of bending energy and load potential and not foundation strain energy

will be ignored, i.e. the functional appears in equation (2.21) will be :

. L l M l ’ 1 1
Vie= [ GED —o Pt o2 Kuw? = L Kow')de (2.22)

2.7 DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATION AND
BOUNDARY CONDITIONS USING THE CALCULUS OF VARIATION.

The calculus of variation is an important method to transform the form
of total potential energy functional toa form of differential equation. The
boundary conditions which are required for the solution of this differential

equation where assumed to be known. As far as the geometrical boundary
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conditions are concerned, such as the displacement and the slope of the line
of deflection of say a beam, this did not pose any difficulties since these are

artificial and predescribed boundary conditions.

However, in the case of the natural boundary conditions, that is to say
the dynamical or forced boundary conditions such as the bending moment at
the boundary, this could be a somewhat ambiguous situation. This is so
because the solution of the differential equations requirt;s a proper number of
boundary conditions in order to make the solution unique. For instance, in
the case of an elastic column loaded axially, the governing differential
equation is of the fourth order and four constants must be found from the
boundary conditions. Consequently, four bounda:y conditions are required.
Consider the general case where the potential energy functional is a
functional of w”, w' as well as w. We seek to find the first variations of this

functional:

oV = 8]: V(w",w'yw,x)dx

L Lo d
= [ 8V
¢
L oV _ ., oV _ , av
= . (—é;’—;,-ﬁw +Wﬁw +ESW)dx (2.233)

where ¥ is as given in equation (2.22) :
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- —-EIw"’ Pw” PLY SRy (2.23b)
2 4

The terms with &w” and &w’ must be rewritten using integration by
parts into the form including only éw .

Integration by parts gives :

.jLaVs "y = (——-)5 I j(

o Jw' o'’ awn
Bw")s (6w") dw l I (;w ——)""owdx (2.24a)
Lg
L LAY I LAy (2.24b)

Substitute equations (2.24a,b) into equation (2.23a), you will get :

o = 12y (‘W,)' (aV)lawdx
(2.25)

oV L)
ol e om

+ ( ) ow"'
Following the principles of the stationary value of the total potential

a,u,"

energy, the equilibrium condition of the column is marked by the vanishing
of the first variation of the total potential energy, i.c., by

oV =20
and since &w is arbitrarily small but non-zero, we get the differential

equation:
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ov ov ov
" _ ' -0 2.26
(aw") (619') +(6w) ( )

We may also write the terms of boundary conditions as :

14 Loov |

L oV
Sw'| — (——)'6 —_— =0 )
(aw") w . (aw") w“+(aw')8wo 2 27a)
where :
14 ]
('5';) = Klw_ K3w3
oV
27 y=-Pw'
(aw')
(ap,')l' = __P.vl‘l' -
2‘;7 > (2.27b)
= EI n
(619") ¥
(aa‘:’/" )I‘ — EIW'H
oV
— y' = ET 4
(aw,,) w

For the sake of clarity, we may write the terms of boundry conditions
of equation (2.27a) explicitly as :

[EIw" (L)sw'(L) — EIw" (0)5w*(0)] - [Ebw" (L)Sw(L) — EIw"" (0)5w(0)] (2.276)
~[Pw'(L)Sw(L) — Pw'(0)5w(0)] = 0 '

Similarly, subsitute equation (2.27b) into equation (2.26) to find the
general form of the governing fourth-order non-linear eigenvalue differential

equation of a column on elastic foundation:

EIw™® + Pw" + Kw—K,w’ =0 (2.28)
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We may look now at the diffemt ways of supporting the column and

then see how the missing boundary conditions can be found from the
condition that the above boundary expression [ equation (2.27¢) ] must

vanish for 8V =0, i.e. for equilibrium.

2.7.1 Boundarv conditions of a column with both ends clamped.

For a both ends clamped column the situation is straigh forward
because the imposed clamped boundary conditions are clearly that
displacement and slope at both ends must vanish which gives us the required

four boundary conditions. The boundary conditions of a column shown in

Figure (2.4) are clearly :
| L -] Assume
_{— | movable end
P X P

PP rr Iyl ri Ol Ta iy

Figare (24) : A finite clamped-clamped column on non-linear elastic

foundation.
w(0)=10 w(L)=0
w'(0) =0 s wiL)= 0} (2.29)

Since the variation of a constant is zero, it follows from these

boundary conditions that:
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Sw(0)=10 Sw(lL)=0
Sw'(0)=0 ’ dw'(L)=0

and thus all the boundary expressions can vanish. The clamped-clamped

boundary condition leads, therefore, to a unique solution and equilibrium.

279 PBoundary conditions of a column_with both ends simply

supported.

Suppose now that instead of being clamped, _the column is merely
simply supported at both ends. In this case, the only physically clear
boundary conditions are the two prescribed boundary conditions, namely the
vanishing of the displacement at both ends of the column and one must now
ask from where the two remaining conditions should come. It is a
particularly fortunate situation that the calculus of variation always furnishes

automatically the correct number of boundary conditions.

The only two boundary conditions of a column shown in Figure (2.5)
are clearly :
w(0)=0 and w(L}=0 : (2.30a)
This implies that :

5w(0)=0 and Sw(L)=0
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Figure (2.5) : A finite simply supported column on non-linear elastic

foundation.

Consequently, and as can be seen clearly from the previous equation
for the boundary terms [ Equation (2.27¢) ], we have to make the other
boundary conditions vanish by requiring that :
w"(0)=0 and w"”(L)=0 (2.30b)
and consequently, all boundary expressions can be made zero as should be.
In other words, simply supported means that, the bending moment is zero at

both ends because w” = 0 means M=0 for a column.
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2.8 REDUCTION OF THE GOVERNING DIFFERENTIAL EQUATION,
BOUNDARY CONDITIONS AND THE TOTAL POTENTIAL ENERGY
FUNCTIONAL TO NON-DIMENSIONAL FORM.

The next step is to write the differential equation, boundary conditions
and the functional in a non-dimensional form. If the non-dimensional

position ¢ is defined such that :

- % (2.31a)
and from this definition, it follows that:
a_1
il (2.31b)
Using the chain rule for differentiation, with the help of equation
(2.31Db) to find that :
dw_dwd, 1dvw
dx didc Ld (2.322)
d'w_d dw dl_ 1dw
dxz - dc(dx dx_ Lz dcz (232b)
3 2 3
N e | (2.320)
s T dde A IP G

da d’w ﬂ_id‘w
d-t‘ dC dx-'i )dx - L4 dc4 (2.32d)

~
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2.8.1 Reduction of the differential equation.

Substitute equations (2.32) into the differential equation [ Equation

(2.28) ], one can get:

4 2
pliw,pldy
rat A

+Kw-Kw' =0

Divide all terms of the previous differential equation by the non-zero
term % , you will get:

d‘w PL*d*w K,L' KL
+ w— w

+ =0
dc*  EI di* EI EI
Assume the following non-dimensionalization:
_ Pl
P="Fr
K L'
k=" 2.33
=L 233)
4
k=KoL
EI |
The differential equation of its non-dimensional form takes its final
shape as:

d'w  d*
dc‘j’ + p?':-l» kw—kw’ =0 (2.34)
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2.8.2 Reduction of the boundary conditions.

(1) Clamped- Clamped Ends:

Use equation (2.31a) to find that :

So the boundary conditions for the clamped case [ Equation (2.29) ]

become in their non-dimensional form as:

w(0)=0 | w(1)=0 (2.35)
w'(0) =0 ’ w'(1)=0 '

(2) Simply supported ends:

Similarly, the boundary conditions for the simply supported case

[ Equation ( 2.30a,b) ] take their non-dimensional form as:

w(0)=0 w(l)=0 (2.36)
w"(0)=0 ’ w"(1)=0 '
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2.8.3 Reduction of the functional.

The total potential energy functional which will be reduced to the
non-dimensional from appears in equation (2.22). The non-dimensional form
simply looks like:

Vz-.: = J-ol(%w"z - %pw'z + %klwz B %kaw4)dc (2.37)

In what follows, the problem will only be discussed in non-
dimensional form. The qualification phrase “ non-dimensional > will be
omitted for convenience; for example p is called the external axial load,

etc...
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Chapter three

SOLUTION OF THE BUCKLED PROBLEM USING

THE METHOD OF TRIAL FUNCTION.

3.1 INTRODUCTION

One of the most important applications of the energy methods is in
establishing approximate solutions using trial functions. This trial function is
generally an approximation to the quantity in which -energy functional 1s
expressed. There are, of course , certain conditions which this function must

satisfy. To start with, the following should be achieved:

(1) The approximation is as good as our guess of the expected shape of

deformation, and

(2) Certain boundary conditions must be satisfied.

In this method, the geometrical boundary conditions, i.e. the boundary
conditions associated with certain geometrical quantities, namely deflection
(w) and slope (w') must be satisfied. Other boundary conditions, the so

called dynamical or force boundary conditions associated with the bending
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moment and thus indirectly with (w”) are optional and when they are

achieved the solution will be more accurate.

3.2 THE APPROPRIATE SELECTION OF THE TRIAL FUNCTION.

3.2.1 Simply supported case:

The suitable trial function related to the simply supported column
which satisfies both geometrical and dynamical boundary conditions of
equation (2.36) is a sinusoidal wave of the form:
w=C sin(mnl) 3.1)
where:

w:  The transverse deflection of the column on the domain ¢ €[0,1].

C: The maximum transverse deflection at the mid point of the column
where £ = 1
2

m: The mode shape number [ m = integer = 1,2,3,..... etc ].

¢:  The non-dimensional position along the column, ¢ [0,1].

3.2.2 Clamped-clamped case:

The suitable well known trial function related to the clamped-clamped
column and achieve the geometrical boundary conditions of equation (2.35)

is a cosine wave of the form:
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w= %[1 — cos(2mnL)] (3.2)

where:

w:  The transverse deflection of the column on the domain ¢ <[0,1].

C:  The maximum transverse deflection at the mid point of the column
where (= -1—.
2

m:  The mode shape number [ m = integer = 1,2,3,..... etc ].

¢:  The non-dimensional position along the column, ¢ €[0,1].

3.3 THE METHOD OF TIMOSHENKO FOR DETERMINING THE CRITICAL

VALUE OF THE COMPRESSIVE LOAD.

The straight form of equilibrium of the compressed column is stable if
the compressive load ( p ) is small, but unstable after ( p ) reaches its critical
value at which lateral buckling begins. This critical value of (p ) may be
found by comparing the energy of the system in the two cases: (1) When the
column is straight and (2) When it is compressed and bent.

The strain energy in the bent column is larger than that in the straight
compressed form, because the energy of bending must be added to the
energy of compression, which may be considered constant for small lateral
deflections. The potential energy of the load ( p ) must also be considered.
Let U be the strain energy due to bending and to elastic foundation and Up

the decrease in the potential energy of the load. Then if Up is less than U,
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deflection of the column is accompanied by an increase in the potential
energy of the system. This means that it would be necessary to apply some
additional lateral force to produce bending. In such a case the straight form

of equilibrium is stable.

On the other hand, if Up> U, deflection the column is accompanied
by a decrease in the potential energy of the system, and the bending will
proceed without application of any lateral force, i.e., the straight form of
equilibrium is wunstable. The critical value of the compressive load is
therefore obtained from the condition:

U=Up

or in other words when functional vanishes, i.e. use equation (2.37) to find

that :
L:(-;—w"z + %klw’ - %kaw")dg
p= o (3.3)
—w'd
02

In what follows, different non-dimensional functional forms which
were discussed in chapter two, will be used to find the compressive buckling

load, these functionals are:
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(1) Functional of equation (2.17):

This functional is independent on ks, i.e. it gives the well known
buckling load (p,) of the classical eigenvalue problem ( J/inear case ).

(2) Functional of equation (2.21):

This functional is dependent on both k; and k; and gives the general
critical buckling load (p; ) for the ( non-linear problem ).

(3) Functional of equation (2.37):

This functional is the same as that of equation (2.21) but the effect of
the high-order non-linear terms of bending energy and load potential are

neglected, this will give the critical buckling load (p3 ).

In this chapter, it will be shown that it is a good approximation to use
the functional of equation (2.37), i.e., [ equation (3.3) ] rather than equation

(2.21) since the percentage error is too small.

3.4 DERIVATION OF THE BUCKLING LOAD FORMS FROM THE PREVIOUS
THREE-FUNCTIONAL FORMS FOR BOTH SIMPLY-SUPPORTED AND

CLAMPED-CLAMPED COLUMNS ON ELASTIC FOUNDATION.

3.4.1 Functional of equation (2.1 linear problem |.

Apply the method of Timoshenko to equation (2.17), you will get:
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! 1 " _l 2
_L(-z-w +— kW)

1] )2
Liw dg

(3.4)

P,

(A)_Simply supported case:

Applying the deflection shape w in equation (3.1) into equation (3.4),

one can find that;
. [ —gw"’dc; = %— |, 1= (mm)* sin(mxt))* g, = -}(rmc)‘C’
. L‘%k,w’dc = ﬁgij:sin’(mnc)dz; - 71-1:,(:z
o [ w2 [ immysinamalyPdL = 4 (mey'C*

Substitute into equation (3.4), the result will be:

(mzn)* +k
S, Vet A 3.
X )’ (3.5a)

(B) _Clamped-clamped case:

Apply the deflection shape w in equation (3.2) into equation (3.4),

you will find that:
‘ .[ ll"’"zdc = < I : [‘1'(2“"7\'-):e cos(Zmal)]* dt; = (mz)' C*
02 2 9072
2
. I:-;-k,w’dc = %L’ [%(1 —cos(2mnl) dC = -%klcz

LS|
o [ Lwrtag = S [l sinemat) g = 4 () C°
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substitute into equation (3.4), the results will be :

_ 16(mmn)* + 3k, (3.5b)
~ 4(mm)? .

D

3.4.2 Functional of equation (2.21) [ Non-linear problem |

Apply the method of Timoshenko to equation (2.21) in its non-

dimensional form you can get :

I:(v;—w"z + -;—Jklw2 + -liw’ w"?— %ksw‘)dq
P = (3.6)

1, 1 .
—w't+—w')d
LG+ g

(A) Simply supported case :

Use equation (3.1) to substitute directly for w into equation (3.8) to

find that :

. J’:%w”w"zd‘; - CT [ = (mn)* sin(mrl )} () cos(rmmt)]* df, = fﬁ—(mn)‘C‘

° j:%w"dg = %‘I: [(mn) cos(mnl)]*dC = %(’m‘)‘c‘ -

* From calculus: Isin" (x)dx = :1 sin™! (x) cos(x) +f____lj‘sin"-2 (x)dx
n n

** From calculus : J' cos” (x)dx = 1 cos" ! (x) sin(x) +2:}-I cos™ 2 (x)dx
n n
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Substitute into equation (3.6), the result will be:

_ 16(mm)* + 16k, + [4(mx)” - 6k,]C” (3.7a)
P, = 16(mn)’ + 3(mn)*C? '

(B) Clamped-clamped case:

Similarly, use equation (3.2) to substitute directly for w into equation (3.6)

to find that :

. Ll-:-w'zw"’dg = 924— f: [(mr)sin(2mnl)]? [—;—(Zmn)z cos(2mnl)} dl = i(mrr)‘C‘

k,C*
4

11 11 35
. L;k,w'dc = L [5(1— cos(2mn{)|*d; = mk_,,(f4

o [iawrdg =S| fmm)sin@mAO) dg = 2 (mm)C*

Substitute into equation (3.6), the result will be :

‘4 6 2
b= 512(mm)* + 96k, 2+[128(mn)4 —235k,10 (3.7b)
128(mn)* + 32(mn)‘C

3.4.3 Functional of equation (2.37) [ Non-linear problem ]|

The application of the method of Timoshenko was already given in

equation (3.3) as :

Il(lw"z + lchlw2 - lk_,,w‘ )t
=22 2 4 (3.8)

(e

P
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(A) Simply supported case :

Substitute directly for w to get :

_ 16(mn)* + 16k, - 6k,C’ 39
P = 16(mn)* (3.92)

(B) Clamped-clamped case :

Similarly, substitute directly for w to get :

512(mn)* + 96k, — 35k,C*
= 3 3.9b
Ps 128(mn)* (3.9)

For the sake of clarity, we may summarize the previous expressions of

the compressive buckling load for different functional forms in Table (3.1) .

Functional Ends supporting state
equation no. Simply supported column : Clamped-clamped column
Equation _ (mn)* +k, _ 16(mm)* + 3k,
Q@.17) P oy ‘ 4(mm)’
Equation _16(mm)* + 16k, + [4(mm)® — 6k,]C* | _ 512(mm)* + 96k, +[128(mm)° —35k,]C?
2= 16(m)? + 3(m) C° P2 128(mm)? +32(mr)* C?
(221)
Equation _16(mm)* + 16k, — 6k,C” _512(mm)* + 96k, — 35k,C”
@237 ps 16(mm)’ Ps "128(mm)’

Table (3.1) : Buckling-Load expressions for different functional forms for
both simply supported and clamped-clamped columns on elastic foundation.
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In the all previous expressions of the buckling load, we will only
study the case of the first mode, i.e. [ m=1 }. It should be pointed here that

the symbol “a” will be used to express the ratio factor of the cubic constant

of foundation to the linear constant of it, i.e. a = k% . This constant o may
1

be positive ( Softening case ), or on the other hand, it may be negative

( Hardening case ).
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Chapter Four

SOLUTION OF THE BUCKLED PROBLEM USING

THE POWER SERIES METHOD

4.1 INTRODUCTION
In general, the power series method is the standard basic method for
solving linear deferential equation with variable coefficients. For the domain

0 < < 1, the expected form of the series solution is

w(€) = CotCig +CaG+CaG ...

=ycL (4.1)

In our problem we will try to solve another kind of differential
equations that is, non-linear eigenvalue deferential equation and see how
much the validity of applying the i)ower series method for such a problem is.
In the power series method we differentiate, add, multiply power series.
These three operations are permissible, in the sense - explained in what

follows.
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4.2 SOLUTION BY THE POWER SERIES METHOD (THE RECURRENCE
FORMULA)
From sub-section (2.8.1), the equation of buckled system in non-

dimensional form for the clamped-clamped column is:

4 2
‘;C‘f + P‘;C}: +kw—k,w' =0
with the boundary conditions:

Lat(€=0):
w (0) = 0, which means that:
Cot+Cix0 +Cox0+ ... +Cyx0=0 > Co=0
also,

L B , which means that :

dC jc-0

1XC1+2XC2X0+3XC3X0+ ..... +Nx(N-1)CNx0=0 = C;=0

2. gt_(_§_=1):
w(l)=0
also,

dw —
d—ch"
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For the case of clamped-clamped column on elastic foundation, a

power series function which already achives these boundary conditions will

be used as it will be shown later.

From equation (4.1) the following can be wnitten:

L]

d‘”’ n-1
;'E = Z nC,C

=1

d*w &

o= Snn 10

W =3 n(n- - 2CL"
dC3 =3 *
d'w

T = Z;n(n ~1)(n-2)(n-3)CL"

(4.22)

(4.2b)

(4.2¢)

(4.2d)

If the series is truncated by ( N ) terms, we will have after shifting the index

(n):

dw_ E(u +2)(n+1)C,.L"

dcg ] nt2

‘;;‘:’ = Af(n +4)(n+3)n+2)(n+1)C,, C"

The term w > can be expressed in series form as:

(4.33)

(4.3b)

(4.4a)
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where :

Vi = Z"Z}J_“‘CkCr,.C,,._,- ,n=0,1,2,..,3N (4.4b)

j=0 k=0
Substitute equations (4.1), (4.3a), (4.3b) and (4.4a) into the differential

equation, one can get:
i“ {(n+4)(n+3)(n+2(n+1C,,, + p(n+ (n+1)C,, + kK,C, —k,V, X" =0 (4.5)
For non-trivial solution ( " = 0 ), then :

(n+8)(n+3)(n+2)(n+1)C,,,+ p(n+2)(n+1)C,,, +kC,—kV, =0

or, the recurrence formula becomes:

C.. = kV,-kC, —p(n+2)(n+1)C, ., ,0=0,12,..N (4.6)
(n+4)(n+3)(n+2)(n+1)

where the non-linear term V,, was given before in equation (4.4b).

Now, in the case of clamped-clamped column, we will try to find a
power series form that already achives the boundary conditions at the other

side of the column ( ¢ = 1). The suitable form of this series is:

W=D T AL @7

n=2

This form may be expanded as:

w=i‘4ﬂcu+1 _i:zAnCnH +i:A‘Cn

n=21 n=2
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Shifting the index (n ), you will get:
N+2 N+l N
w=24,.0"->24, " +) AL

n=4 H=3

N+2 N+1

= —ZAzC’ + Azcz + AJCJ + ZA:;—:C.-" - Z 24, 0" +
n=4 n=4

2AL"

n=4

N
= AL (A, 24,007 + (A = 24, H A + (A, — 24400 + AL

n=4

= Co+C1g +Cog2+Cs ...

Equate this series by the truncated series in eqﬁation (4.1) to find the

relationship between the coefficiants of C’s and A’s as:

Co=0 _ Ay=0
C, =0 A, =0

Co=A; 2 A=C;

Cs=A3-2A; D As=C3+2A;
C=Apa2-2A011+A, forn=4,56,...,.N
2 A=Cp-Anat2A,1, forn=4,506,. N4
An-2Ax=0

Ax=0

2> Ana=0

Subsitute into equation (4.8d), then:

0
AN=CN'AN-2+27@1=0 > Ana=Cn

(4.8a)

(4.8b)

(4.8¢)

(4.8d)

(4.8¢)

(4.8f)

(4.8g)
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ANg=Cn.-Anat2An=0 = AN_3=CN_]+2CN (48h)

All the coefficients ( A’s ) are now known.

4.3 CONVERTING THE BUCKLING LOAD EQUATION TO A POWER SERIES

FORM.

From section (3.4.3), the buckling load equation is :

11, 1 1
L G»' 2 +-2—klw’ - Zk_.,w‘ )¢,

ll r2
oiw dC

In what follows, we will write the previous form of the buckling load

in a power series form as :
11
(a) The term szlw’dq :
Form equation (4.1), and after it was truncated up to N terms:
N
w=) CLt"
n=0
Then we can write:
N 2
o =(See)
n=0

=2, Z C,C.- 6"

n=0 j=0

-0 (4.92)
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where :
0.=¥CC., (4.9b)
then the value of the integral becomes:

fi 2 hwide = 2k, (ZN Q,e;")dc

Cuﬂ 1

n+1je

1 2N 1, _l 2N
O AR S IR

15 L (4.9)

2! on+l
11 r2 .
(b) The term jo L
Form equation (4.2b):
N-1

w' = inC,CH =Y (n+1)C,C"

Then, w'? becomes :

w'?= (Nz-l(n + I)C,”C")

AN-1)

Z Z G+D)(n—j+ l)Cj+lC-—j+1C”

n=0 j=0

UN-1)

> DL" ‘ (4.10a)

where :

D, =3 (j+ D= j+1)C;Cusur (4.10b)
i=0
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hence, the value of the integral becomes:

ETIEN I

IZ(N 1) N 12(N 1 Cnﬂ 1

2 Z I 4 = 2 ; "n+lfe

s> D 4.10
= — R . C

2 Z:‘, n+1 ( )

(c) The term L‘%w"’dc; :

Form equation (4.3a):

N-2

w" = z (n+2)(n+1)C,,L"

n=0

Then, w"? becomes :

wt = (Z(" +2)(n+1)C,,,¢" J

AN-2) m

= Y DG+ +D(n-j+2)n-j+DIC;,C, ;.C"
n=0 j=0
2(N-2)
= YRL" (4.11a)
where :
R, Z[(J +2)(j+ DIl(n - j+2)(n—j+1IC;,,C, 5., (4.11b)

hence, the integral becomes:

j:%w“dc_,:-j [Z(Nf}e C Jdﬁ;

1 2(N 1) 130D le 1

== Ic_,dc— > R,

n=0

n+1lje
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(d) The term I:%k;,w‘dg :

Form equation (4.1):

then , the integral will be:
s =k j‘[ﬁF C”Jd(‘;
0 4 3 _4 3, pour n

_—k szc_:"dc——k SF,

n=0

4N F

—kZ

on+1

Substitute equations (4.9c), (4.10c), (4.11c¢) and (4.12c) into the equation of

P, you will get:

Clﬂl 1

(4.11c)

(4.12a)

(4.12b)

(4.12¢)
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1 4N F. N Qn 2iN-2) R,,
—ka -k, - Z e
2 ioon+l “n+l 4 n+l 4
p= ] (4.13)
o nt+1

which represents the non-dimensional buckling load formula in the form of

power series.
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Chapter Five

RESULTS AND DISCUSSION

5.1 INTRODUCTION

The formulas of both mentioned cases of simply supported and
clamped-clamped columns on elastic foundation in trial function solution and
the clamped-clamped column on elastic foundation in power series solution
are computerized using FORTRAN language and the coﬁesponding computer

programs are shown in appendix (A).

In this chapter a parametric study for all parameters that affect the
problem will be conducted, these parameters will be valid over ranges which

are expected to be physically valid.

The parameters which will be studied are those expected to affect the
non-dimensional buckling load, and mode shapes. These parameters are:
1. The linear foundation modulus (k;), [ k=0 > k=800 ].
2. The ratio factor ( @ ), [ =3 > a=20].
3. The amplitude of deflection (C ), [ C=0.05 > C=04].

4. The polynomial degree (N) , [ N=20 -> N=40].
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5.2 ERROR RESULTS FROM USING DIFFERENT FUNCTIONALS.

As it was discussed in chapter three, the exact buckling load (p;) can
be determined by using the functional equation (2.21) with all its terms,
while the approximate buckling load (ps) can be found by using the same

functional equation while neglecting the high order terms of bending energy
( %Efw"‘w"2 ) and the load potential ( %Pw" ). The high-order foundation

strain energy will remain to be studied. In other words, the approximate

buckling load (p3) was determined by using functional equation (2.22).

Two computer programs shown in Appendix section (A.2), and (A.3)
are designed to find (p;), (p3) and the percentage error for both simply
supported and clamped-clamped cases respectively. The percentage error in

buckling load results from using the exact or approximate functional forms

will be given as;

% Error = M x 100 (5.1)
J 2}

This percentage error is shown in Figures (5.1) and (5.2) for clamped-
clamped and simply supported columns on elastic foundation, respectively,

at constant linear elastic foundation modulus k; = 200. It was shown that the
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error is negligible and it is within (0-6%) for small deflection problems and

small ratio factors (a ).

In other words, the percentage error results from using the different
previous functionals is reasonable and acceptable for a small hardening and
softem'ng small deflection problems. So it is a very good approximation to
use the functional equation (2.22) to find the non-linear buckling load in the
case of the power series solution as it was shown in cl_:apter four rather than

the complicated mathematical form which appears in equation (2.21).

53 PARAMETRIC STUDY OF THE PROBLEM USING TRIAL FUNCTION
METHOD

Structures supported by elastic foundation are quite common in
engineering, and the literature on the linear analysis of the beam is extensive.
Much less coverage has been given to the non-linear analysis of this class of
structures, and, in particular, very little attention has been given to structures
supported by a non-linear elastic foundation. So, a complete parametric
study addressing the effects of a non-linear elastic parameter on the overall
non-linear behavior is unavailable. The present work is an attempt to remedy

this shortage of information.
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It is well known that the foundation status determines whether the
structure is in hardening or in softening. So this will address the effect of
linear foundation modulus ( k; ), ratio factor ( « ), amplitude (C ) and
polynomial order ( N ) on the overall behavior of columns supported by a

foundation that exhibits non-linear hardening and softening.

In order to explain the trends of figures ( 5.3) through ( 5.6), let us
consider the plot of Figure (5.a) shown below of the load ( P ) versus the
mid point deflection ( C), we see that the curve does not start at the origin
but at a constant value Py which represents the classical buckling load, i.e.

this constant is the well known Euler critical load of the structure.

I

: Unstable

:/— Stable

|
Py

Stable
P Ae el
-
C

Figure(5.a) : The load (P) versus the mid-point deflection (C).
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Furthermore, this curve has a horizontal tangent at Py as expected.
This fact can be seen clearly from the initial postbuckling equation (3.9)

where we have second order terms (C?) but no first order terms (C).

Referring to figures (5.3) through (5.6) which represent the variation
of the buckling load (p) with the mid point deflection (C) for various values
of the non-linear coefficient (o ) at specified values of ( ki), we will notice
that the increase of the linear foundation modulus (ki), which is a positive
constant, increases the required buckling load of the column (p) when the
other parameters are constants ( o and C). This happens actually because
the strain energy of the foundation increases and the structure becomes more

hardened, so a more axial load is required to buckle the column.

Since - as it was mentioned - that the hardened structure needs more
axial compressive load than the softened structure to be buckled, then this
fact appears clearly in Figures (5.3) through (5.6), for different ratio factors
( « ) and constant ( k; ). In these figures, and at a specified mid point
deflection C, it was found that the buckling load iﬁcreases when the
structure becomes more hardened; i.e. when the ratio factor o decreases
( from o =1.4to o =-1.6). In other words, it needs more load potential to

overcome both  bending energy and  strain energy of foundation. It is
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clear from these figures that there is no-effect of the amplitude ( C ) on the

classical buckling load of the linear problem ( a=0 ).

1t is clear from Figures (5.7) through (5.10), which represent the mode
shapes of deflection for both softening and hardening cases, that the ratio
factor (o)) has a direct effect on the mode shape. For the hardening case
when ( «=-0.6), it appears from Figures (5.7) and (5.9) that the buckling
load increases as the deflection increases, and this is expected since, as the
deflection increases, the non-linear strain energy of the foundation will
directly increase and, hence, the overall strain energy of the structure will
increase, which means that more load potential is needed to buckle the
column. While for the softening case when ( o = 0.6) it appears from
Figures (5.8) and (5.10) that the buckling load increases as the deflection
becomes small; this is because the non-linear strain energy of foundation
assists the load potential to overcome the bending energy of the structure. In
other words, the non-linear strain energy of foundation plays a role exactly
opposite to the role of the linear strain energy of foundation, which will
decrease the overall strain energy of the structure and then less buckling

load is required.
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The linear foundation modulus k; has a great effect on the resulting
mode shape, specially in the case when a power series function is used. This
does not mean that it has not any effect when a trial sinusoidal function s
used, but it determines only the integer mode shape as it is shown in Figure
(5.11). This figure, which represents the mode shape transformation as (k; )
changes, shows that the wave length of the buckled shape decreases as the
structure becomes more hardened, as this clearly appears in Equations (5.2)

and (5.3).

Similarly, as the effect of (k; ) on the mode shape was discussed the
ratio factor ( o ) also has a great effect on the mode shape. This effect is
clearly shown in Figure (5.12),which also represents the mode shape
transformation with varying ( « ). In this case, as the structure becomes
more softened, the mode shape becomes more closer to the linear behavior (
the wave length of the buckled shape increases ), since the effect of « in
softening case reduces the effect of the positive linear foundation modulus
ki ( i.e. ke decreases ), and hence, the trend of the mode shape becomes,
somehow, close to the linear problem. This fact is also emphasized in Figure

(5.17) for a =20.
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The reason behind the fact that the mode shape number should be

integer, i.e.(m = integer ), is that it is the only case which satisfies both the

differential equation and the boundary conditions at the same time when the

trial function of solution is chosen as a sinusoidal wave, 1.e. in the case of

simply supported column:

k
p=m'n’ + m’;c’ ,
to minimize p, then:
@,
dm
which yields to:
4 kl
n=
¥

where:

m=1,2,3,...

(52)

(5.3)

(m) is an integer that comes from approximating the real value to the first

~ integer lower value.

(keg) is the equivalent foundation modulus which is a function of k;, a and

C, i.e. For simply supported columns

k., =k(1-3aC?) [ See Appendix A .
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In this case the mode shape seems to be one or two complete half
waves depending on the mode shape number ( m ), and it does not appear

anyhow in between.

5.4 PARAMETRIC STUDY OF THE PROBLEM USING POWER SERIES METHOD

In the case of power series solution, it clearly appears in Figures
(5.13) through (5.16), which represent the mode shapes for different values
of linear foundation modulus (k;), that the mode shapes transferred from
the first mode to the second mode and scans all the shapes in between at
different values of k;. In other word, since the mode shape in between
satisfies both differential equation and boundary conditions, then the

solution exists.

To be more specific, Figure (5.13) shows the transformation of the
mode shape from the first mode (k;=0) up to the second mode (ki~7 00). The
classical buckling load increases when - as it was expected - the deflection
is increased, since the structure becomes harder and harder. It should be
pointed here that the classical buckling load is not affected by the amplitude

since the problem is linear.
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Figure (5.14) shows the slope of the deflected line of elastica at

various points along the column. This figure insures that the boundary
conditions are satisfied. It also shows that the slope of the column at its
fixed ends increases as the linear foundation modulus k; increases, and

hence the buckling load does.

The explanation of the behavior of Figures (5.15) and (5.16) is similar
to that of Figures (5.13) and (5.14), respectively, except that they represent
the case of hardening structure. In this case, at each value of linear
foundation modulus ( ki ), the solution exists and the boundary condition are
satisfied. In this case the solution is gradually transformed to the second

mode as the structure becomes more hardened and, hence, the buckling load

increases.

The effect of the ratio factor a on the mode shapes is clearly
presented in Figures (5.17) through (5.20) in the case of the power series
solution. It was shown that as the structure becomes more hardened, i.e. ( «
decreases from a=20 to a=0), then it needs more axial cofnpressive load to
be buckled. That is because the equivalent overall strain energy of
foundation will increase. From these figures, it is clear that the mode shape

is transformed to the higher modes as the structures becomes more hardened
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and, on the other hand, it seems to look like the linear behavior when the

structure becomes very softened ( o =20).

This fact has been discussed in Figures (5.11)and (5.12). Here, it
should be pointed that the mode shape transformation in Figure (5.19) when
k;=600 is more clear than that in Figure (5.17) when k;=100, since the
structure is more hardened. The slopes represented in Figures (5.18) and
(5.20) are shown to insure that all the boundary copditions have been

satisfied.

As we found previously in the trial function solution, the same was
found in the power series method. Figure (5.21) which represents load-
deflection diagram for different values of ratio factor ( a ), shows that the
required buckling load increases as the column becomes more hardened for
a specified value of deflection ( C ), i.e. when the ratio factor («) decreases
from « = 3to o =0. This is because - as it was previously explained - the
total bending energy and strain foundation energy will increase when the
ratio factor ( a ) decreases, which requires, for sure, moré load potential to

overcome those energies, and hence, more compressive buckling load.
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What was obtained in the trial function results, is expected to happen

in the power series method in Figure (5.22). This figure reflects the fact that
the structure needs more axial applied load to be buckled when it becomes
more hardened. The classical buckling load ( p ) in the case whenno

foundation exists ( k;=0) appears to be equal to 39.2.

Figures (5.23) and (5.24) emphasize the fact that appeared in Figures
(5.3) through (5.6) and show - as it was expected - how the load is decaying
as the structure becomes more softened for various values of the linear
foundation modulus (k). In both figures, it is clearly that the buckling load
level in the case of k;=600 is higher then the level in the case of k;=100,

since the structure is more hardened.

5.5 COMPARISON BETWEEN SIMPLY SUPPORTED AND CLAMPED-CLAMPED
COLI.JMNS USING TRIAL FUNCTION METHOD

Figures ( 5.25) through (5.27) present the results of both simply
supported and clamped-clamped columns on elastic foundation on the same

graph.
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These figures show that the clamped-clamped column needs more
axial compressive load than the simply supported column to be buckled, and
since its ends are fixed then the deflected shape is expected to be at a level
less than that of the simply supported column with horizontal slope at its

clamped ends.

5.6 EFFECT OF THE POLYNOMIAL DEGREE ( N)

The approximating function in the power series method shows an
erratic and unpredictable solution before a certain value of polynomial order
( N ). For each order, there are an infinite number of buckling loads and
hence infinite number of mode shapes. The minimum one is the only one

which was chosen as the buckling load of the structure.

Figures (5.28) through (5.31) show the effect of the approximating
function order ( N ) on the estimated non-dimensional buckling load ( p ) for
a clamped-clamped column on elastic foundation for various values of (ki )
and (). From these figures, the study of the solution convergence shows
that the estimated non-dimensional buckling load encounters some error at a
low polynomial degree ( N ). By increasing the approximating function
order, the error in the estimated non-dimensional buckling load decreases.

After a certain polynomial degree ( N ), the non-dimensional buckling load
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will reach a steady value, that value is the exact value of the non-

dimensional buckling load.

The running time of the power series program in Appendix section
( A.4) depends on the problem considered, the approximating function order
( N ), the solution convergence tolerance and the speed of the computef
used. Depending on these factors the running time varies from 5 minutes to

more than half an hour.
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Chapter Six

CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS.
Several important points have emerged from this work, which can be

summarized as follows:

1- The power series method is a very powerful method. It can be
computerized easily. Its results suffer from truncation errors and round off

errors due to large mathematical operations since the problem is non-linear.

2- The trial function method is a good approximate method to find the
buckling loads and the corresponding mode shapes. A closed-form formulas

for the buckling loads is a good advantage of this method.

3. Increasing the linear foundation modulus ( ki) or decreasing the ratio
factor ( « ) makes the structure to be more hardened, and hence, needs more

axial compressive load to be buckled.
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4- The overall foundation modulus ( linear and nonlinear parts ) has a great
effect on the mode shapes. Increasing this modulus will decrease the wave

length of the mode shape and transform it into another form.

5- The boundary conditions have great effect on determining the buckling
load and the mode shape of the structure. It was found that the clamped-
clamped column need more axial compressive load to be buckled than the
simply supported columns. Furthermore, the level of deﬂection for clamped-

clamped columns is less than the level for simply supported.

6- The running time of the power series program was mainly dependent on
the polynomial order (N ). It was found from the convergence study of the
power series solution that the 20" polynomial order is the most suitable one
for establishing a solution to the problem, i.e. after which the non-

dimensional buckling load will reach its steady state value.

7. The trend of solution of both trial function method and power series

method is identical.

8- The trial function method is an approximate method, and gives the

solution at integer mode shapes ( for a specified values of k; ), while the
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power series method is an exact method which gives the accurate solution at

any value of k; although it needs more running time if it was computerized.

6.2 RECOMMENDATIONS.
The present work suggests that the following points need to be

investigated:

1- Take the non-linear terms of the functional (‘w"w"2 and w'*) into
consideration to study:

(a) The case of large deflection problems.

(b) The case when the column behaves as a very hardened or very softened

structure, since the error becomes sensible if these terms are neglected.

2- Apply another forms of trial functions which satisfy the boundary

conditions to the problem and compare their results.

3. Try to solve a similar problem but with initial imperfection types and
other boundary conditions by using the power series method to study how

much it is applicable to solve such kinds of problems.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



103

4- Solve the buckling problem which is under consideration by usinga

finite-difference method. A detailed and complete formulation of this method

is found in Appendix ( B ).
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Appendix A

PROGRAMS AND SAMPLE RUNS.

A.1 PROGRAM (1).

THIS PROGRAM FINDS THE MODE SHAPE NUMBER FOR
DIFFERENT LINEAR FOUNDATION COEFFICIENTS AND RATIO
FACTORS WITH THEIR CORRESPONDING BUCKLING LOADS FOR
SIMPLY SUPPORTED COLUMNS ON ELASTIC FOUNDATION
USING TRAIL FUNCTION METHOD DISCUSSED IN CHAPTER
THREE.

REAL MA
OPEN (1, FILE='HEHE.OUT', STATUS="NEW')
DO 3 K1=1400,1900,300

HRITE (L, ¥) T a3 0 1 0 8 0 0 0 0 03 3 e
'

WRITE(1,*)" **SIMPLY SUPPORTED**!

WRITE (1, *)" **%* FOR Kl= ',Kl

WRITE (1, *)

PI=22./7.

DO 1 €=0.1,0.3,0.1

WRITE (1, *) " ALPHA M P C

WRITE (1, %) "##H##H 548 S S0 HHHE HRERE R ER R R AR H IR

DO 2 ALPHA=0.3,2.,0.4
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KEQ=K1* (1.-(3.*ALPHA*C**2)/8.)

IF (KEQ.GT.0.0) MA=(KEQ**0.25)/PI

IF (KEQ.GT.0.0) M=INT(MA)

IF (KEQ.GT.0.0) P={(MA*PI)**2+KEQ/ (MA*PI)**2
IF (KEQ.GT.0.0) WRITE(1,*)ALPHA,M,P,C
CONTINUE

1 CONTINUE

CONTINUE
STOP
END

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



108

SAMPLE RUN
**STMPLY SUPPORTED**
*%** FOR Kl= 1400
ALPHA M P C
BEESAHH S S S HH AR E SRR RS B R S R
0.3000000 1 74.77968 0.1000000
0.7000000 1 T74.72617 0.1000000
1.100000 1 74.67262 0.1000000
1.500000 1 74.61903 0.1000000
1.900000 1 74.56541 0.1000000
ALPHA M P C
HUBBHAHSHERERERHH A S H S SRR EEH R
0.3000000 1 74.64584 0.2000000
0.7000000 1 74.43118 G.2000000
1.100000 1 74.18895 0.2000000
1.500000 1 73.97297 0.2000000
1.900000 1 73.75636 0.2000000
ALPHA M P C
BUHBEHHE ARG H S HHH R SRR R R B R
0.3000000 1 74.43118 0.3000000
0.7000000 1 73.91888 0.3000000
1.100000 1 73.43024 0.3000000
1.500000 1 72.91080 0.3000000
1.800000 1 72.38785 0.3000000
**SIMPLY SUPPORTED**
**x%%* FOR Kl= 1700
ALPHA M P - C
BHHHBHAHHH S SSRGS R R R R R
0.3000000 2 82.41358 0.1000000
0.7000000 2 82.34076 0.1000000
1.100000 2 82.26786 0.1000000
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1.500000 2 82.21922 0.1000000

1.900000 2 82.14621 0.1000000
ATPHA M P C
HESBEUREEEBEBEEREBH A S SRR R
0.3000000 2 82.26786 0.2000000
0.7000000 2 82.0243% 0.2000000
1.100000 2 81.75574 0.2000000
1.500000 2 81.51073 0.2000000
1.200000 2 81.26500 0,2000000
ALPHA M P C
BUGHUBEEEEBHAH RS EE R E R R R R AR R R A
0.3000000 2 82.02439 0.3000000
0.7000000 2 81.46165 0.3000000
1.100000 2 80.89500 0.3000000
1.500000 2 B0.32434 0.3000000
1.900000 2 79.74961 0.3000000
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A.2 PROGRAM (2).

THIS PROGRAM FINDS THE BUCKLING LOADS BASED ON
THE DIFFERENT FUNCTIONALS DISCUSSED IN THE THESIS
USING TRAIL FUNCTIONS FOR DIFFERENT VALUES OF LINEAR
FOUNDATION COEFFICIENTS, RATIO FACTORS AND MID-POINT
DEFLECTIONS, FOR SIMPLY SUPPORTED COLUMNS ON ELASTIC

FOUNDATION.

OPEN (1, FILE="HOHOQ.OUT"', STATUS="NEW")
READ(*,*) M
DO 3 K1=0,600,200

WRITE (1, *)

WRITE(1,*)" *kSTMPLY SUPPORTED**'
WRITE(1,*)’ **%x* FOR Kl= ',Kl

WRITE (1,*)

PI=22./7.

DO 1 ALPHA=-1.,1.,0.2

WRITE (1, *)

WRITE(1,*)" ALPHA M cC P1
+ p2 P3 % ERROR'

WRITE (1, %) " ### & #4##H## 4 H# R R R R R R R E
+HE SRR R S

DO 2 C=0,0.25,0.05

K3=ALPHA*K1

Pl=( (M*PI)**4+K1)/ ( (M*PI)**2)
7 IF(C.NE.O) THEN

P2=(16.% (M*PI)**4+16.*K1+ (4.* (M*PI)**6-6.%K3) *C**2)/
+(16.% (M*PI) **2+3,* ((M*PI)**4)*C**2)

ELSE
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P2=P1
ENDIF
P3=(8.% (M*PI) **4+8,*K1-3.*K3*C**+2)/(8.* (M*PI)**2)
ERROR= ( (ABS (P3-P2)) /P3) *100.
WRITE (1, 4)ALPHA,M,C,P1, P2, P3,ERROR
4
FORMAT (5X,F5.2,4%X,11,4%X,F4.2,2X,3(3X,F7.3) ,2X%, F5.2,'%")
2 CONTINUE
1 CONTINUE
3 CONTINUE
STOP
END
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SAMPLE RUN

**3IMPLY SUPPORTED**
*%*k FOR Kl= 600

ALPHA M C Pl P2 P3 % ERROR
BB R B ER RS EH RSB R B R R R

-0.60 1 0.00 70.621 70.621 70.621 0.00%
-0.60 1 0.05 70.621 70.391 70.656 0.37%
-0.60 1 0.10 70.621 69.711 70.758 1.48%
-0.60 1 0.15 70.621 68.618 70.928 3.26%
-0.60 1 0.20 70.621 67.168 71.168 5.62%
-0.60 1 0.25 70.621 65.427 71.47¢6 B8.46%
ALPHA M C Pl P2 P3 % ERROR
SHBG B SRS B E R R R R R R R
-0.30 1 0.00 70.621 70.621 70.621 0.00%
-0.30 1 0.05 70.621 70.374 70.638 0.37%
-0.30 1 0.10 70.621 69.644 70.690 1.48%
-0.30 1 0.15 70.621 68.471 70.7175 3.26%
-0.30 1 0.20. 70.621 66.913 70.895 5.62%
-0.30 1 0.25 70.621 65.044 71.048 8.45%
ALPHA M C Pl P2 P3 % ERROR
BHEREEEBEEHHHE B HE BB S S BRI  S EREHH H HHH
0.00 1 0.00 70.621 70.621 70.621 0.00%
0.00 1 0.05 70.621 70.357 70.621 0.37%
0.00 1 0.10 70.621 69,577 70.621 1.48%
0.00 1 0.15 70.621 68.323 70.621 3.25%
0.00 1 0.20 70.621 66.659 70.621 5.61%
0.00 1 0.25 70.621 64.661 70.621 8.44%
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ALPHA M C Pl P2 P3 % ERROR
###############################################################
0.30 1 0.00 70.621 70.621 70.621 0.00%

0.30 1 0.05 70.621 70.340 70.604 0.37%

0.30 1 0.10 70.621 69.510 70.553  1.48%

0.30 1 0.15 70.621 68.175 70.468 3.25%

0.30 1 0.20 | 70.621 66.404 70.348 5.61%

0.30 1 0.25 70.621 64.278 70.194 8.43%
ALPHA M C Pl P2 P3 % ERROR

###############################################################

g.60 1 0.00 70.621 70.621 70.621 0.00%
0.60 1 0.05 70.621 70.323 70.587 0.37%
0.60 1 0.10 70.621 69.442 - 70.485 1.48%
0.60 1 0.15 70.621 68.028 70.314 3.25%
0.60 1 0.20 70.621 66.150 70.075 5.60%
0.60 1 0.25 70.621 63.896 69.767 8.42%
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A.3 PROGRAM (3)

THIS PROGRAM FINDS THE BUCKLING LOADS BASED ON
THE DIFFERENT FUNCTIONALS DISCUSSED IN THE THESIS
USING TRAIL FUNCTIONS FOR DIFFERENT VALUES OF LINEAR
FOUNDATION COEFFICIENTS,RATIO FACTORS AND MID-POINT
DEFLECTIONS, FOR CLAMPED-CLAMPED COLUMNS ON ELASTIC

FOUNDATION

OPEN (1, FILE='HOHQOHO.QUT"', STATUS="NEW")
READ(*,*}) M
DO 3 K1=0,800,200

WRITE(1,*)

WRITE(1,*)"' ** CLAMPED-CLAMPED* * '

WRITE (1,*)' x%x% FOR Kl= ',Kl

WRITE (1,*)

PI=22./17.

DO 1 ALPHA=-1.,1.,0.2

WRITE (1, *}

WRITE(1,*)' ALPHA M c Pl
+ P2 P3 % ERROR'

WRITE (1, %) " #### 554 # 8RR EH R R

+HH R RS
DO 2 €=0,0.25,0.05
K3=ALPHA*K1
Pl=(16.* (M*PI)**4+3.*K1)/ (4.* (M*PI) **2)
7 IF(C.NE.O) THEN
P2=(512.% (M*PI)**4+96.*K1+ (128.* (M*PI)**6-
+35.*%K3) *C**2) / (128.* (M*PI) **2+32.* ((M*PI)**4) *C**2)
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ELSE
p2=P1
ENDIF
P3=(512.* (M*PI)**4+96.*Kl-
35,%K3*C*%2) /(128 .* (M¥PI) **2)
ERROR= ( (RBS (P3-P2))/P3)*100.
WRITE (1, 4)ALPHA,M,C,P1, P2, P3, ERROR
4
FORMAT(SX,F5.2,4X,11,4X,F4.2,2X,3(3X,F7.3),2X,F5.2,'%')
2 CONTINUE
1 CONTINUE
3 CONTINUE
STOP
END
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A.4 PROGRAM ( 4)

THIS PROGRAM IS DESIGNED TO FIND THE NON-LINEAR
BUCKLING LOAD NORMALIZED EIGEN-VECTOR OF DEFLECTION
AND THE SLOPE VECTOR OF A CLAMPED-CLAMPED COLUMN

ON ELASTIC FOUNDATION USING THE POWER SERIES METHOD.

DOUBLE PRECISION C{0:100),V(0:150),D(0:100),R(0:100),
+A(0:100),Q(0:100),F(0:200),U(0:20),UP(0:20),
+NU(0:20) ,MAX, SUM, ERROR
REAIL inc,K1,K3
OPEN (1, FILE='CLAMP13.0UT', STATUS="NEW"')
READ(*,*)C2,C3, K1,ALPHA,N,TOL,start,inc
K3=K1*ALPHA

C(0)=0.0
C({1)=0.0
C(2)=C2
C(3)=C3

DO 17 P=start,100, inc

C *kkk ok kokkk Kk [ NONLINEAR TERM V(I) ] * ok kk ok ok ok kK

DO 1 I=0,N-4

SUM=0.0

DO 2 J=0,1I

DO 3 K=0,J
SUM=SUM+C (K) *C{I-J) *C(J-K)
CONTINUE

CONTINUE

V(I)=5UM

C *khkkkkkkk [ RECURRENCE FORMULA ] * ok ok ok ok ok ok kok ok
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C(I+4)=(K3*V(I)-K1*C(I)=-P* (I+2)* (I+1)*C(I+2))/
F((T+4)* (T+3) * (I+2)* (I+1))
1 CONTINUE

DO 4 I=N-3,3*N
SUM=0.0
Do 5 J=0,1
DO 6 K=0,J
SUM=SUM+C (K) *C (I-J) *C(J-K)
CONTINUE
CONTINUE
V(I)=SUM
4 CONTINUE

**x*%*%x* (TERMS OF BUCKLING-LOAD FORMULA JREHFE

SUM1=0.0

DO 616 I=0,2*(N-1)

SUM=0.0

DO 617 J=0,1

SUM=SUM+ (J+1) * (I+1-J) *C(J+1) *C(I+1-J)
617 CONTINUE

D(I)=SUM

SUM1=SUM1+D(I)/ (I+1}
616 CONTINUE

SUM2=0.0

DO 618 I=0,2* (N-2)

SUM=0.0

DO 619 J=0,1I

SUM=SUM+ (J+1) * (J+2) * (I+1-J) * (I+2-J) *C(J+2) *C(I+2-J)
619 CONTINUE

R(I)=SUM

SUM2=SUM2+R (I)/ (I+1)
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618 CONTINUE

SUM3=0.0

DO 620 I=0,2*N

SUM=0.0

DO 621 J=0,1I

SUM=SUM+C {J}*C (I-J)
621 CCNTINUE

Q(I)=SUM

SUM3=SUM3+Q(I)/ (I+1)
620 CONTINUE

SUM4=0.0
DO 622 I=0,4*N
SUM=0.0
DO 623 J=0,1I
DO 624 K=0,J
DO 625 M=0,K
SUM=SUM+C (M) *C (K-M) *C (J-K) *C(I-J)
625 CONTINUE
624 CONTINUE
623 CONTINUE
F(I}=SUM
SUMA=SUM4+F (I} / (I+1)}
622 CONTINUE

ERROR=P*SUM1- (SUM2+K1*SUM3-0.5*K3*SUM4)
WRITE (*, *) P, ERROR

IF (ABS (ERROR) .LE.TOL) THEN

GO TO 18

ELSE
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18

188

119

ENDIF
CONTINUE

**xw*x* [ CONVERTING C-COEFF's INTO A-COEFF's ]**%xx*

A(2)=C(2)
A(3)=C(3}+2.*A(2)

DO 188 I=4,N-4
A(I)=C(I)-A(I-2)+2.*A(I-1)

CONTINUE
A(N-3)=C(N-1)+2.*C(N}
A (N-2)=C(N)
A(N-1)=0.0

A(N)=0.0

WRITE(1,*)"'

+
WRITE (1, *) ***** RESULTS OF THE CLAMPED-CLAMPED COLUMN

+PROGRAM ****!
WRITE (1, *)
WRITE (1, *)"

+ 1

WRITE (1, 66)N,Kl,ALPHA
WRITE(1,*)'** p=',P,’ ** ERROR=', ERROR

WRITE (1, *)}
WRITE(1,*)"'

+
WRITE(1,*)'** THE COEFFICIENTS co0,Cl1,C2,C3,...... retc

+ARE:"
WRITE {1, *)
WRITE (1, *) {(C(I),I=0,N)
WRITE(1,*)
WRITE(1,*)'

+
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WRITE(l,*)'** THE COEFFICIENTS AO,Al,AZ2,A3,...... retc

+ARE: !

N

88

3800

3900

WRITE (1, *)
WRITE (1, *) (A(I), I=0,N}

*%* [ FINDING THE DEFLECTION AND SLOPE VECTORS ] kkx*

DO 88 ZETA=0,1,0.1

SUM=0.0

SUMP=0.0

DO 77 K=2,N

SUM=SUM+A (K) *ZETA**K
SUMP=SUMP+k*A (K) *ZETA** (K-1}

CONTINUE

U(10*ZETA)=SUM* (ZETA-1,) **2
UP(lO*ZETA)=SUMP*(ZETA—l.)**2+2.*SUM*(ZETA-l.)
CONTINUE

**%%x* [ NORMALIZING THE DEFLECTION VECTOR ] EEEE KK

MAX=0.0

DO 3800 ZETA=0,1,0.1

1F (ABS (MAX) .LT.ABS (U(10*ZETA})) MAX=U (10*ZETA)
CONTINUE

DO 3900 ZETA=0,1,0.1

NU (10*ZETA)=U(10*ZETA) /MAX

CONTINUE

WRITE (1, *)
WRITE(1,*)"'

+

WRITE(1,*)'** THE DEFLECTION VECTCR IS:'
WRITE (1, *) (U(I),I=0,10)
WRITE (1, *)
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WRITE (1, *)'

+ 1

WRITE(1,*)'** THE SLOPE VECTOR IS:'
WRITE (1, *) (UP(I), I=0,10)

WRITE (1, *)
WRITE (1,*)’
+
WRITE (1, *) '** THE NORMALIZED DEFLECTION VECTOR IS:'

WRITE(1,*) (NU(I),I=0,10)

WRITE (L, %) * v a1 e e 0 0 0 0 0 N

e A e e e o s

66 FORMAT (1X,'** POLYNOMIAL DEGREE=',I2,8X,"** Ki=',F5.1,
+7X,'** ALPHA=',F4.1)
STOP
END
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** POLYNOMIAL DEGREE=20
39.50000

*% p=

** Kl= 0.0

** ALPHA= 0.0

*+ ERROR= -3.0621886253356934E-06

** THE COEFFICIENTS €0,Cl1,CZ2,C3,...... retce ARE:

0.0000000000000000E+00

0.0000000000000000E4+00

0.0000000000000000E+00 -0.6583333431432645

0.8668055684719649
0.0000000000000000E+00C
-8.0298699546403222E-02

0.0000000000000000E+00
0.2683399579778538
0.0000000000000000E+00

0.0000000000000000E+00 ~2.8682702831335995E-03

3.7025057576397771E-04

0.0000000000000000E+00

0.2000000029802322
0.000000000000E+00
-0.6114074991900467
0.000000000000E+00
1.742746501144E-02
0.000000060000E+00Q
-3.848657300704E-05

*% THE COEFFICIENTS AO,Al,A2,A3,......,etc ARE:

0.0000000000000000E+00

0.4000000059604645
-0.1081944460566673
-0.1055927595099627

0.0000000000000000E+00

-5,8333334202567741E-02

0.3002777822522653

-4.01868072413222857E-02

1.0322602233853534E-02 -4.5714102158096818E-03

4,9549490775259702E-04
-3.8486573007045052E-05

1.6067718640023695E-04
0.0000000000000000E+00

0.200000002980232
-0.516666674365600
9.7342511371151E-02
2.5216614683516E-02
-2.0379576540286E-03
-7.6973146014090E-05
0.0000000000000E+00

*+ THE DEFLECTION VECTCR I15:

0.0000000000000000E+00
1.3260829942823044E-02
1.8313028787481136E-02
1.9265848357003849E-03

1.9350274058541683E-03
1.8323247974497244E-02
1.3244358589498466E-02
2.8153916605800178E-15

7.0006052061411E-03
2.0253161507508E-02
€.9845341263439E-03

** THE SLOPE VECTOR 13:
0.0000000000000000E+00
6.0519457722971485E-02

~3.7462210431771153E-02

-3.7313569773251916E-02

3.7418187186149918E-02
3.7373979570527325E-02
-6.0551692006742019E-02
4.7234433785805815E-08

6.0536345971958E-02
-5.4644714439652E-05

-6.0494802774432E-02
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*+ THE NORMALIZED DEFLECTION VECTOR IS:
0.0000000000000000E+00 9.5541992549499310E-02 0.3456549340973

0.6547535770110227 0.9047105049601450 1.0000000000000
0.9042059325252528 0.6539403038181697 0.3448614244129
9,5125140585392197E-02 1.3900998417142347E-13
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SAMPLE RUN(2)

IA

** POLYNOMIAL DEGREE=20 ** K1=100.0 +*+ ALPHA= 0.0
*+ p=  46.90000 **+ FERROR= 7.4696540832519531E-04
** THE COEFFICIENTS C0,C1,C2,C3,...... ,etc ARE:

0.0000000000000000E+00
0.0000000000000000E+00
1.166450163159415
0.0000000000000000E+00
-0.1562065115233526
0.0000000000000000E+00
1.0410647836200927E-03

0.000000C000000000E+C0
-0.7816667037457232
0.0000000000000000E+00
0.4616845683741152
0.0000000000000000E+00
-7.1329907130753398E-03
0.00000000000000C0E+00O

0.2000000029802
0.0000000000000E+00
-0.93037431641864
0.0000000000000E+00
3.8331457573164E-02
0.0000000000000E+0Q0
-1.2235499201069E-04

** THE COEFFICIENTS AO,Al,A2,A3,......,etc ARE:

0.0000000000000000E+00

0.4000000059604645
-0.1785499331765936
-0.2849481788277509
-9.2873547286367581E-02
~0.1365490236653611
-1.2235499201069655E-04

0.0000000000000000E+00
~0.1816666948050264

0.4062335292173302
-0.1688544644761723
-0.1329863444681415
~0.1454633538770462

0.0000000000000000E+00

0.2000000025802
-0.7633333955705

6.0642675194789E-02
-5.2760750124593E-02
-0.1347676840667
-2.4470998402139%E-04

0.00000000C0000E+00

** THE DEFLECTION VECTOR IS:

0.0000000000000000E+00
1.2460445690131044E-02
1.1982156581024819E-02
-3.2263564277788736E-03

1.9229905433035677E-03
1.6203290606864402E-02
5.1570909175950448E-03
-1.7141786177496979E-14

6.8216519829970E-03
1.6152921419633E-02
-1.3045141785732E-03

*% THE SLOPE VECTOR IS:
0.0000000000000000E+0D
5.1046698198064054E~-02

-5.8826428752824064E-02
1.6345591507850614E~02

3.6942580374029100E-02
2.0501237328423032E-02
~-7.2608783480062344E~02
-2.8759165725017909E-07

5.7133313655812E-02
-2.2088256880814E-02

-4.,9387925518022E-02
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*++ THE NORMALIZED DEFLECTION VECTOR IS:

0.0000000000000000E+00 0.1186790134152693 0.4210041125%09

0.7690071104971894 1.0000000000000000 0.9968914223380

0.7394890872319891 0.3182742964204001 -8.0509213234785E-02
-0.1991173586933047 -1.0579200604002616E-12

n“-...~~~-..~~~-u~~~~~~~~~~~~~~~~~~~~~~~~~~~...~~~~n....~~~~~~~n_~~~~~~~~~~~-....-...,-...v,..-..-..
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*+ POLYNOMIAL DEGREE=20
42.40000

*% p=

** K1=100.0

*+ ALPHA= 3.0

*+ ERROR= -5.8412551879882813E-06

*+ THE COEFFICIENTS C0,C1,C2,C3,...... retc ARE:

0.0000000000000000E+00
0.0000000000000000E+00
0.9432000859406283
0.00000000000000C0E+00
-9.2328572373299890E-02
0.0000000000000000E+00
1.2159219997440094E-02

0.0000000000000000E+00
-0.7066667026281361
0.0000000000000000E+00
0.2983833166317535
0.0000000000000000E+00
-1.27509193712365%02E-02
0.0000000000000000E+00

0.2000000029802
0.0000000000000E+0Q0
-0.6720737137224
0.0000000000000E+00
2.5422471854767E-02
0.0000000000000E+00C
-1.1453210399130E-02

++ THE COEFFICIENTS AQ,Al,A2,A3,......,etc ARE:

0.0000000000000000E+00

0.4000000059604645
-0.1768000070426187
-0.2113472756092853
~0.1151468803764113
-0.1527586861806020
~1.1453210399130084E-02

0.0000000000000000E+00
~0.,1066666936874393

0.2597333782501058
-0.1485042864072273
-0.1446324635476532
-0.1695727168683133

0.0000000000000000E+00

0.2000000029802
-0.6133333933353

2.4193051820410E-02
~8.5661297205169E-02
-0.1486955748641
-2.2906420798260E-02

0.0000000000000E+00Q

*+ THE DEFLECTION VECTOR IS:

0.0000000000000000E+00
1.2921212534338837E-02
1.4766758019624130E-02
-2.7012224465773034E-03

1.9302698604828389E-03
1.7362051817061585E-02
7.9838310665892808E-03
-1.7387753805681672E-14

6.9280087882440E-03
1.8216471668920E-02
6.1480120050078E-04

*+ THE SLOPE VECTOR IS:
0.0000000000000000E+00
5.6312833228004284E-02

-5,4233089911581133E-02
4.3795298420860381E-03

3.7229393148761315E-02
2.8973203194531859E-02
-7.6896513299556863E-02
-2.9171833179246131E-07

5.9130304545870E-02
-1.3140516417588E-02
-6.2578629436489E-02
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*+ THE NORMALIZED DEFLECTION VECTOR IS:

0.0000000000000000E+00 0,1059628832391363 0.380315623%121

0.7093147767129962 0.9530963038623728 1.0000000000000

0.8106266838060715 0.4382753812973969 3.3749740985775E-02
-0.1482846127214603 -9.5450722410462462E-13
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*% POLYNOMIAL DEGREE=20 *+ K1=200.0 *+ ALPHA=-0.6
** p= 41.20000 ** FRROR= 5.8402121067047119E-04
+«%* THE COEFFICIENTS C0,C1,C2,C3,...... ,etc ARE:

0.0000000000000000E+0Q

0.0000000000000000E+00

0.0000000000000000E+00 -0.6866666896144551

0.8319111875379545

0.0000000000000000E+00
~-5.5647540901155131E-02

0.0000000000000000E+00
-3.6052802260900645E-03

©¢.0000000000000C00E+00Q
0.2095580855924653

0.0000000000000000E+00
1.6674936622284606E-03
0.0000000000000000E+00

0.2000000029802
0.0000000000000E+00
-0.5303029710867
0.0000000000000E+0Q0
£.9407952007620E-03
0.0000000000000E+Q0
3.3648624101003E-03

*+ THE COEFFICIENTS AOQO,Al,AZ,A3,...... etc ARE:

0.0000000000000000E+00

0.4000000059604645
-0.2280888664042496
~0.2529613058664824
~0.2351100005391884
-0.3106721866126805

3.3648624101003005E-03

0.0000000000000000E+00
-8.6666680673758378E-02

0.1171556344994821
-0.2284616904569954
-0.2662579260308604
~-0.3312118232413620

0.0000000000000000E+00

0.20000006029802
-0.5733333673079
-6.7902835683500E-02
-0.2039620750475
-0.2884650563217

6.7297248202006E-03

0.0000000000000E+00

** THE DEFLECTION VECTOR IS:

0.0000000000000000E+00
1.3010879045564573E-02
1.4094193304539724E-02
-6.0167164748324953E-03

1.93215996818479464E-03
1.7502406564297432E-02
5.9302106274875158E-03
-3.3336492520599666E-14

6.9532403096408E-03
1.8203517080682E-02
~-3.0683700779540E-03

** THE SLOPE VECTOR IS:
0.0000000000000000E+00
5.7081558507191490E-02

-6,43487976504339%20E-02
2.9370355213159881E-02

3.7302820478114977E-02
2.8898953308853326E-02
-9.3835218618751871E-02
-5.5929395656312991E-07

5.9570706180320E-02
-1.6664719706127E-02
-7.4500904162824E-02

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



129

#% THE NORMALIZED DEFLECTION VECTOR I5:

0.0000000000000000E+00 0.1061421248039149 0.3819723561563
0.7147453422268611 0.9614848870535788 1.0000000000000
0.7742566033844529 0.3257727944112950 -0.1685591891036
-0.3305249446118066 -1.8313215173114608E-12
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Appendix B

FINITE DIFFERENCE METHOD.

B.1 INTRODUCTION
The problem of non-linear buckling on elastic foundation which is
under consideration will only be formulated here by using a finite difference

method.

The finite difference method is a numerical technique for solving
differential equations. It essentially reduces a problem having infinite
degrees of freedom to one with finite degrees of freedom, Gerald, et. al
(1983). This is achieved by substituting an algebraic expression for each

unknown function and its derivative.

Since each derivative is replaced by the value of the function at the
reference and neighboring points, the accuracy of the derivatives, and hence
of the solution, can be increased if these points are so chosen that they are as
close to each other as possible. This technique has the disadvantage that it

gives the value of the function only at discrete points. Thus, if an analytical
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expression has to be obtained for a deflected shape, a curve has then to be

fitted passing through all these points.

B.2 DERIVATION OF FINITE ELEMENT RELATION USING TAYLOR SERIES.

For deriving finite difference relations the Taylor series expansion can

be applied if the grid points are evenly-spaced.

Let the function (x) be known at evenly-spaced points and also at the
mid-points of the evenly-spaced points then, the first central difference of (x)

at point (i) is defined by (see Figure B.1 ):

daw| w(x, +h/2)-w(x,—hl/2)

dxl: h

Wiinr — Wi sz

h
This can also be written as:

dw| _ w(x; + b)—w(x, — h)

dx |: 2h
Wiy~ Wiy
T 2k
_ Wi ~Winy (B.1)
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Wi_s

h2\h/2 | h/2 | h2 R | h/2|hs2| N2 h/2 | h/2

& ® L ¢ ®
i-2  i-1 1 i1 i+2

Figure (B.1) : Grid points for central difference.

The second difference at point (i) is the difference of the first

difference. Hence,

In the same manner, the third difference can be written as:

w o, —3w 1+3w‘d1“"’ 3

3 +2 i+= hat _
d w _ 1+3 +2 2 i
de’ i K’
or,

d’w _ Wi~ 3w, +3w,_, — W,
dx’ | 2n°

Further, the forth difference is given by:

(B.2)

(B.3)
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d’w| d° d*w
dx’? i—dxz dx?
d*w d*w| d*w
-2 7| T 52
dx? |in dx® i dx*® i

hz

Wy —2W t W, = 2w, AW, = 2w AW 20 W

] h‘

W, —4w, +6w, —dw,  + W,
2 1 x 1 2 (B4)

B.3 FORMULATION OF THE PROBLEM.

Remember the non-dimensional form of the differential equation of

our problem [ equation (2.34) ]:

d*w N d*w

iz deé'2 +kw—kw> =0

with the boundary conditions:

e For simply supported case:

2
w=dw=0, att=0and £ = 1.

e For clamped-clamped case:

dw o) ==
w_d—g_o’ atg =0and £ =1.
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Divide the interval (0,1) of ¢ into (n) equal subintervals, each of
length (h=1/n) as shown in Figure (B.2). Using the previous equations, the
difference equation at any point (i) of the differential equation of the

problem is given as:

1
;‘-[wl.*2 —4w, , +6w, —4dw, _, + w,._Z] + f;—[w,.“ - 2w, - wH] +kw, - kw =0

multiplying this equation by h®, then:

[Wins — 4w, + 6w, —dw,_, + W,y |+ P [, — 2w, - Wiy ]+ kB, - kh'w =0 (B.5)

h=1/n
| | . o | | |
| | i | T i | r |
0 1 2 3 4 & n—4 n—< n

Let
PLi?
A=ph'=
P El

K L‘h

K, = kb= lEI (B.6)
414
x,=kh' = K,L'k
EJI

The difference equation becomes:

W, +(A-w,, +(x, - 22+6)w, + (A -4)w,_ +W,, -xw =0 (B.7)
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With the coersponding boundary conditions:
e For simply supported case, and by using equation (B.2):

w,=w, =0

W, =w (B.8a)
wn+l = wn-l
e For clamped-clamped case, and by using equation (B.1):
w,=w, =0
w_, =W, (B.8b)

u’n+l = u’u—l

B.4 EXPRESSING THE FUNCTIONAL BY FINITE DIFFERENCE FORM
The functional of the problem, which leads - as it was seen in chapter

two - to the buckling load formula [ equation (3.3) |:

(1, 1 1
_ L (—2—w 2 +Ek1w2 -Zkaw‘ Y&
11 .2
“Ew dc

Using the previous finite difference relations, it would be seen that:

1o , h3& -
® ELW d(,’z;é w; (B.9a)

. % [lwtdg = %Z w (B.9b)
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= LS - w) (B.9¢)

- y W, — 2w, — W, : (B.9d)
243 4

Subsitute equations (B.6) and (B.9) into the buckling load equation [

equation (3.3) ], you will end up with:

42“: (Wi —2w: - w,._l)2 + 4"'12": wr — 21(,2": w}
i=0 i=0 i=0

ﬂ' = n
Z (wi+l - ‘vl'—l )2

zu: [4(w,,, — 2w, - wiy) +dx,w! - 26w
i=0

_ i (B.10)

Z (w.'u — Wi )2

An appropriate computer algorethem for solving non-linear system of
equations can be designed based on the previous equations to end up with

the solution of the problem under consideration.
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APPENDIX C

NUMERICAL RESULUTS FOR THE
CONVERGENCE STUDY OF THE POWER SERIES

METHOD

The following tables show the numerical results for the convergence
study of the solution for the clamped-clamped column on elastic foundation

for different values of ( k; ), (o ) and starting C values.

Table (C.1) : Numerical resuluts for the convergence study showing the
buckling load ( p) for different polynomial degres (N)for
the clamped- clamped column on elastic foundation with

k,=0, a=0 and starting C value = 0.3.

N 5 7 10 13 15 18 20 30 40

P 223 | 147 | 10 | 224|332 | 392 | 395 | 395 | 395

Table (C.2) : Numerical resuluts for the convergence study showing the
buckling load ( p) for different polynomial degres (N ) for
the clamped- clamped column on elastic foundation with

k;=200, o=0 and starting C value = 0.3.

N 5 6 7 8 10 {15 |17 |19 |20 (25 (30 [40

p 248502 (502(23.3(31.5|423|57.4|57.8|62.9|62.9|62.8]63
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Table (C.3) : Numerical resuluts for the convergence study showing the
buckling load ( p ) for different polynomial degres (N ) for
the clamped- clamped column on elastic foundation with

k=200, a=0.6 and starting C value = 0.3.
N |4 6 8 10 113 [15 |18 |19 |20 |21 (25 |27
P 248 |50 233 (3121445 (3771377 (3791455455 [462 |46.1

Table (C.4) : Numerical resuluts for the convergence study showing the
buckling load ( p) for different polynomial degres ( N) for
the clamped- clamped column on elastic foundation with
k=100, a=3 and starting C value = 0.2,

7

10

13 |18 (19

20

22

25

30

35

p 233

48.8

26.2

42.1136.2 | 34.

8

437

40.1

43.5

434

43.5
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